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Abstract

Machine reading comprehension (MRC), which requires ma-
chines to answer questions about a given context, has at-
tracted much attention in recent years. However, academic lit-
erature is still beyond the scope of state-of-the-art MRC sys-
tems, rendering an MRC task on academic literature strongly
needed. In this paper, we propose PAPERQA, a novel dataset
focusing on the corpus of research papers on machine learn-
ing. PAPERQA consists of over 12,000 question-answer pairs
posed by crowdworkers on a set of over 1,800 academic ab-
stracts. To better incorporate semantic information, we design
a new model which utilizes the shared query aware context
representation as the base of sentence ranking and answer ex-
traction. Experimental evaluations show that our model out-
performs state-of-the-art MRC models on this task. Our work
helps to develop services on academic QA and benefits re-
searchers by saving much time on paper scanning.

Introduction
With the rapid development of deep learning in recent years,
the number of published papers shows an astonishing up-
ward trend (15,400 machine learning research papers pub-
lished in 2015, 32,300 published in 2016 and 54,600 pub-
lished in 2017)1, which requires researchers to spend a large
amount of time reading innumerable academic papers for
the purpose of research, e.g., for survey of related work.
Although more than a few paper-reading groups have been
formed to help highlight the most critical information in re-
search papers, time-consuming human efforts are inevitably
needed, motivating us to design an intelligent system as
an alternative. Machine reading comprehension (MRC) sys-
tems (Hirschman et al. 1999), which enable machines to an-
swer questions about a certain document with a thorough un-
derstanding of it, have become an accessible and productive
substitute for human labor. Application of MRC to academic
papers can save researchers much time on reading papers as
well as sorting out papers that meet their requirements.

In this paper, we focus on utilizing the power of MRC
to search as well as highlight the essential information in
academic paper abstracts in certain topics. To achieve this
goal, we start with training machines to perform question
answering tasks, using the accuracy of answers to repre-
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sent how machines read and comprehend. However, exist-
ing MRC datasets, such as SQuAD (Rajpurkar et al. 2016;
Rajpurkar, Jia, and Liang 2018), CNN/Daily Mails (Her-
mann et al. 2015) and MS MARCO (Nguyen et al. 2016)
mostly concentrate on news articles and stories. An alterna-
tive and distinctive dataset focusing on academic literature
is strongly needed.

Inspired by this, we present a novel MRC dataset on aca-
demic abstracts called PAPERQA. PAPERQA consists of
over 12,000 question-answer pairs based on a set of over
1,800 abstracts from machine learning papers. These pa-
pers have been accepted by top-tier machine learning confer-
ences. The questions are proposed according to the specific
context in each abstract, asking about the paper’s objective,
method, model, experiment and others. Answers to these
questions, consisting of spans (i.e., sequences of words) in
the corresponding abstract, are annotated by students with
machine learning background. The reasons why corpus in
PAPERQA is constrained to research paper abstracts are
twofold. First, since an abstract summarizes the main con-
tent of a paper, it precisely provides the most concerned in-
formation required by researchers, while neglecting trivial
details that one normally shows minor interest in at the very
first glimpse of the paper. Second, the long content of aca-
demic papers would be very different in structures and pre-
sentation of formulas, figures and tables, making it difficult
to extract useful and concise information for further use.

Figure 1 shows a sample abstract in our dataset. For the
question “what problem does this paper study?”, the answer
is highlighted in the text and presented below as well. Typ-
ically, there are several question-answer pairs for a piece of
abstract. From this figure, we can see that PAPERQA has
three major characteristics that make it challenging and dis-
tinguishing. (1) It is a question answering dataset based on
the corpus of academic abstracts. (2) Most of the questions
require deep comprehension and reasoning beyond simple
word matching or extraction. (3) The answers may con-
tain sophisticated terminology. Such entities require external
knowledge to recognize.

To tackle the challenging task and assess the difficulty
of PAPERQA , we benchmark some existing machine com-
prehension models and propose an intuitive model based on
sentence selection (Yu et al. 2014) and word labeling to eval-
uate their performances. Our model mainly consists of three
modules: attention-based context and query representation,
sentence ranking, and answer extraction. In this model, we



Multiple instance learning (MIL) is a variation of supervised 
learning where a single class label is assigned to a bag of 
instances. In this paper, we state the MIL problem as learning 
the Bernoulli distribution of the bag label where the bag label 
probability is fully parameterized by neural networks. 
Furthermore, we propose a neural network-based permutation-
invariant aggregation operator that corresponds to the attention 
mechanism. Notably, an application of the proposed attention-
based operator provides insight into the contribution of each 
instance to the bag label. We show empirically that our 
approach achieves comparable performance to the best MIL 
methods on benchmark MIL datasets and it outperforms other 
methods on a MNIST-based MIL dataset and two real-life 
histopathology datasets without sacrificing interpretability.

Question 1: What problem does this paper study? 

Answer 2: a neural network-based permutation-
invariant aggregation operator 

Question 2: What approach does this paper propose? 

Answer 1:  Multiple instance learning

Question 3: What dataset does this paper use? 

Answer 3: a MNIST-based MIL dataset and two real-
life histopathology datasets 

Figure 1: An example of question answering on abstracts.

apply bi-directional attention flow (Seo et al. 2016) on top of
the concatenation of word embedding and character embed-
ding, whose encoding vectors are shared by the other two
modules. Next, we build a multi-layer perceptron to conduct
a match score corresponding to each sentence in the abstract.
The sentence of the highest score will be taken as the evi-
dence. Finally, to extract the specific span of words, we pass
the query-aware context representation into a biLSTM-CRF
model and tag the answer sequence. Empirical results on our
datasets of scientific paper abstracts show that our model
significantly outperforms the baseline models.

In sum, our contributions could be summarized as fol-
lows. First, we provide a challenging machine comprehen-
sion dataset focusing on scholarly paper abstracts, quite dif-
ferent from other existing question answering datasets such
as SQuAD (Rajpurkar et al. 2016). Second, we propose
a novel model which outperforms other existing machine
comprehension models in academic literature reading task.
Finally, from the perspective of applications, our work helps
to develop tools to efficiently identify the essential informa-
tion in massive abstracts and could be used to establish an
academic knowledge base where machine learning entities
could be extracted from answers.

Dataset Construction

In this section, we introduce the process through which we
establish the corpus, propose questions and collect answers
via crowdsourcing.

Abstract Selection
The recent five years have witnessed an astounding growth
in the field of machine learning, especially deep learning,
which makes our dataset more meaningful to focus on ma-
chine learning papers. In addition, papers from different
fields vary a lot in structures, contents, objectives, etc. Such
distinctions make it hard for machines to learn multifarious
patterns. Papers on machine learning share similar patterns,
ensuring that the task is learnable. Under these considera-
tions, we collect papers in the field of machine learning pub-
lished after the year of 2012, mainly sourced from top-tier
conferences, such as NIPS, ICML, ICLR, AAAI, etc. We
extract each paper’s abstract along with its title, authors to
build the base of our dataset. Abstracts that are too short are
discarded.

Question Posing
We establish a question base composed of a finite number
of questions. Questions are rendered through empirical
observation of hundreds of abstracts, ensuring that they
can be applied to numerous abstracts rather than only a
few of them. For a given abstract, the proposed questions
are selected from the question base and contingent on the
specific context of the abstract. For instance, if a paper
proposes a model, we ask about what the model is, what it
is based on and how it outperforms previous models, etc;
if an experiment is carried out, questions concern applied
datasets and demonstrated results. The questions in the
question base, divided into four types of semantic heading
as Dernoncourt and Lee (2017)’s setting, objective, method,
results, and others, are finite and general. This form of
question posing is due to the fact that the more general
questions we ask, the deeper comprehension of the abstract
is needed. On the contrary, specific and non-unified ques-
tions focus on details related to the context, and answers
can be retrieved using merely lexical or syntactic variation
but not understanding of the academic knowledge. Thus,
specific and non-unified questions do not distinguish our
datasets from datasets like SQuAD (Rajpurkar et al. 2016;
Rajpurkar, Jia, and Liang 2018) in that they do not ask about
more abstruse academic knowledge, and do not require
deeper understanding as well. An example of a question set
that we provide according to a specific abstract is shown in
Table 1, which is a subset of the question base.

Category Question
Objective What problem(s) does this paper address?
Method What model does this paper propose?
Method What is the proposed model based on?
Experiments What does the result of this paper show?
Experiments How does this result outperform existing work?

Table 1: An example of a question set for a specific abstract.

Answer Sourcing
We create an interactive crowdsourcing website, which ran-
domly presents a paper abstract in our database with several
questions following the abstract. We invite over 200 crowd-
workers to assist in building this dataset. Our crowdwork-
ers are college students majoring in computer science who
have taken machine learning courses before. Students are



awarded bonus according to their performance. Each stu-
dent provides answers in approxiamately 10 abstracts on av-
erage, and the maximum number of question-answer pairs
provided by a single student is about 200. Crowdworkers
answer questions after acquiring a thorough understand-
ing of the abstract presented. They may render the answer
null if the abstract contains insufficient information. That is,
crowdworkers select questions that they can answer from the
preparative question base, thus constructing a specific que-
siton set for each abstract. Answers can only be attained by
highlighting and copying continuous words (i.e. span) from
the abstract. We provide our crowdworkers with detailed in-
structions as well as examples of good and bad answers. The
answers selected by crowdworkers can then be stored into
our dataset.
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Figure 2: The distribution of the length of answers.

The final clean-up step is done through human efforts
as well. To ensure the quality of this dataset as well as
evaluate human performance, each answer is scrutinized
by at least two crowdworkers. Crowdworkers examine
whether the answer is valid, e.g., whether the answer makes
sense, serves as an answer to the specific question and is
of proper length. Valid answers are maintained. Answers
either too short or too long are revised. Answers that are
entirely nonsense are discarded and re-supplied by our
crowdworkers.

Type Objective Method Results Others Total
#(Number) 1783 4821 2564 3721 12889

Table 2: Number of QA pairs according to question types

Dataset Analysis

In total, we collect 1,892 abstracts and 12,889 question-
answer pairs. Table 2 counts the number of QA pairs accord-
ing to question types. Method covers nearly 40% of the total,
2.7 times as large as the percentage of Objective. Thus, types
of questions are not that unbalanced in number. Figure 2 il-
lustrates the distribution of answers’ lengths, where the ma-
jority are centralized between 2 and 20 approximately. Fur-
thermore, we split our datasets into 3 parts as train/dev/test
in an approximate ratio of 8 : 1 : 1. The train and dev sets
are available online2.

2http://bit.ly/PaperQA

Proposed Methodology
As the example in Figure 1 shows, our dataset would be
challenging for models that focus on word matching but ig-
nore intrinsic semantics such as (Wang and Jiang 2016a;
Wang et al. 2016b; Tan et al. 2016). The result of QANet
(Yu et al. 2018) listed in Table 3 supports this statement as
well. QANet matches the word model but fails to clarify its
semantic functions. We also assume that each sentence in
an abstract typically serves as one semantic heading corre-
lated to the questions, such as objective, method, and results.
Thus, each sentence is relatively independent at the semantic
level, which motivates us to match the sentences with ques-
tions by attention mechanism (Vaswani et al. 2017). Follow-
ing this idea, we intend to first find an evidence sentence
where the answer sequence most likely appears in the se-
mantic level, and then extract a span from the evidence snip-
pet as the final answer. Based on this analysis, we design a
two-stage framework consisting of sentence ranking (Wang
and Nyberg 2015) and answer extraction, as is illustrated
in Figure 3, both of which share the context’s query aware
vector representation acquired by attention mechanism. Our
approach makes a deeper comprehension of academic ab-
stracts without the utilization of external knowledge.

Problem Formulation
As the common setting of machine reading compre-
hension tasks, given an abstract with n sentences
P = {s(1), s(2),..., s(n)}, where each sentence s =
{c1, c2,..., cl} has arbitrary length of l, and a question
with m words Q = {w1, w2,..., wm}, our task is to pre-
dict an answer A to question Q based on evidence pro-
vided by the abstract P . In the setting of our dataset,
the answer A is constrained to a sequence of consecutive
words{ci,..., cj} ⊆ s(a)(1 ≤ i ≤ j ≤ l) as a span lo-
cated in the a-th sentence of abstract P . Most questions in-
volve semantic-level comprehension, and answers typically
contain certain terminology. This challenges machine read-
ers to have deeper comprehension, and also requires more
reasoning on the abstract.

Question Aware Vector Representation
Similar to most existing question-answering models, we ob-
tain the embedding x of each word w by concatenating
its word embedding xw ∈ Rd1 and character embedding
xc ∈ Rd2 . The word embedding is initialized from the pre-
trained GloVe (2014) word vectors of dimension d1 = 300
and is fixed during training. To build a trainable character
embedding, we use a bi-LSTM network to extract character-
level features, taking the final hidden states and representing
the word as d2 = 100 dimensional character vectors. Finally,
we obtain the word representation x = [xw;xc] ∈ Rd1+d2 .

Suppose each sentence s in the abstract and the ques-
tion Q are converted to their word representations H =
{xpt }lt=1 ∈ Rd×l and U = {xqt}mt=1 ∈ Rd×m separately
where d = d1 + d2, we then apply bi-directional attention
flow (Seo et al. 2016) to incorporate question information
into sentence representation. Firstly, we compute the simi-
larity matrix S ∈ Rl×m by

Stj = f(H:t, U:j) ∈ R (1)
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Figure 3: Overview of our model. At first, we concatenate word embedding and character embedding to form the word rep-
resentation. Then biDAF is applied to get the context-to-query attention and query-to-context attention. Next, we use MLP to
select the sentence with the highest rank as the evidence snippet. Finally, the query-aware context sequence is passed into a
biLSTM-CRF model in order to extract the specific word span.

with the similarity function

f(h, u) = w>S [h;u;h ◦ u] (2)

where wS is a trainable weight vector and ◦ is element-wise
multiplication. Then the similarity matrix S is normalized
by the softmax function across column as Ŝ and across row
as S̄ respectively. We then compute the context-to-query at-
tention by Ũ = U · Ŝ> ∈ Rd×l and the query-to-context
attention by H̃ = H · S̄ · Ŝ> ∈ Rd×l. Finally, a simple con-
catenation is used to yield the question-aware vector repre-
sentation of each word in the sentence

G:t = [H:t; Ũ:t;H:t ◦ Ũ:t;H:t ◦ H̃:t] ∈ R4d (3)

where G:t refers to the t-th column vector (corresponding to
t-th context word) of 4d dimension. The conducted query
aware context representation G would be shared by both
sentence ranking and answer extraction later.

Sentence Ranking
We first locate the sentence where the answer most likely
appears, which is also called question answering sentence
ranking (QASR). Instead of using the word representation
directly, we exploit the query aware context representation
for a better understanding of the sentence semantics. To
be specific, the question aware representation of each sen-
tence G(i) = {G(i)

:t }lt=1 and the question representation
U = {xqt}mt=1 are added up separately, combined and passed

into a multi-layer perceptron (MLP) with one hidden layer,
denoted as β, for a match score g(i).

g(i) = β(

l∑
t=1

G
(i)
:t ,

m∑
t=1

xqt ) (4)

We use the following normalization function to represent the
probability g(i) that the sentence s(i) contains the answer to
the question Q:

ĝ(i) =
exp g(i)∑n
i=1 exp g(i)

(5)

We then rank the normalized match scores and take the sen-
tence with highest score as the evidence. Hence, the corre-
sponding loss function is

LSR = −
n∑

i=1

(yi log ĝ(i) + (1− yi) log(1− ĝ(i))) (6)

where yi ∈ {0, 1} denotes the label indicating whether
the answer exists in the sentence. There is always only one
yj = 1 among all the sentences for a pair of abstract P and
question Q.

Answer Extraction
Once the evidence sentence is extracted, the next step is
to pinpoint specific word sequence as the final answer. We
model this as a sequence tagging problem (Yao et al. 2013)



rather than only predicting the start and end points of an-
swers (Wang and Jiang 2016b), because the sequence model
could take more syntactic structure information into con-
sideration. In sequence tagging, each token in the sentence
is tagged as one of the following labels: B-ANS (the be-
ginning of answer), I-ANS (inside of answer), O (outside
the answer). We use two layers of bi-directional LSTM
(Hochreiter and Schmidhuber 1997) over the candidate sen-
tence’s question aware representation to capture the seman-
tic information, and also a fully connected layer to decode
the score vector st

ht = bi-LSTM(ht−1, G:t)

h′t = bi-LSTM(h′t−1, ht)

at = Wh′t + b

(7)

We adopt Huang, Xu, and Yu (2015)’s strategy to make
use of neighbor tag information, and use a linear-chain
CRF (Lafferty, McCallum, and Pereira 2001) model to con-
duct CRF scores C(y1, y2,..., yl) associated with the tag
sequence {y1, y2,..., yl}. Denoting y as the abbreviated
symbol of tag sequence y1, y2,..., yl, we apply a softmax
to the scores of all possible sequences, in which the answer
tokens are consecutive because we must ensure every answer
is a span, to compute its possibility

P(y) =
expC(y1, y2,..., yl)∑

y1,y2,...,yl
expC(y1, y2,..., yl)

(8)

And the loss function is defined as

LAE = − log P(ŷ) (9)

where ŷ is the labeled tag sequence.

Joint Learning
For a given training sample, each sentence s(i) is fed into
our model along with the question Q for a match score ĝ(i)

and a predicted sequence y(i). The tags for sentences that
don’t contain any answer are all labeled to O. Similar to Sul-
tan, Castelli, and Florian (2016)’s work, the whole model is
trained by minimizing the joint objective function

L = γLSR +

n∑
i=1

L
(i)
AE (10)

where γ is a hyper-parameter for tuning the weight of two
loss functions.

Experiment
In this section, we benchmark our method on PAPERQA
dataset and compare its performance with that of two ma-
chine reading comprehension models.

Implementation Details
We use NLTK3 tokenizer to preprocess the data. The maxi-
mum sentence length is set to 80 while the maximum ques-
tion length is set to 16, ensuring that all data don’t exceed

3https://www.nltk.org/

these lengths. We batch training samples in the same ab-
stract by length and dynamically pad the short sentences
with a special symbol <PAD>. For word embedding, we
use the pretrained 300 dimensional GLoVe (Pennington,
Socher, and Manning 2014) word vectors which are fixed
during training, while all the out-of-vocabulary words are
replaced with a special symbol <UNK>, whose embedding
is updated during training. Each character embedding is ran-
domly initialized as a 100 dimensional trainable vector. For
sentence ranking, the number of units of hidden layer is 128
and tanh is utilized as the activation function in the MLP.
The hidden vector size in bi-LSTM for answer extraction
is set to 300. We also apply dropout between layers with a
dropout rate (2014) of 0.5. The hyper-parameter γ is 1.5,
making the sentence ranking loss cover a larger weight rel-
ative to answer extraction loss. To train this model, we use
the Adam (2014) optimizer with a learning rate of 0.001, in
which exponential moving average is applied on all trainable
variables with a decay rate 0.9.

Baselines
We conduct experiments with following models as baseline
models.

R-NET R-NET (Wang et al. 2017) is an end-to-end neu-
ral network model for question answering task with the for-
mulation of MRC. R-NET first matches the question and
the passage with gated attention-based recurrent networks to
obtain question-aware passage representation. Then a self-
matching attention mechanism is employed to refine the rep-
resentation by matching the passage against itself. Finally,
the pointer networks are applied to locate the positions of
answers from the passages. We use the NLPLearn imple-
mentation4.

QANet QANet (Yu et al. 2018) is the state-of-the-art Q&A
architecture which takes first place in SQuAD leaderboard5.
The encoder of QANet consists exclusively of convolution
and self-attention, where convolution models local interac-
tions and self-attention models global interactions. We use
NLPLearn implementation6 with 740k trainable parameters.

Human Performance We evaluate human performance
on PAPERQA’s dev and test sets. Recall that answers are
scrutinized by at least two crowdworkers during the clean-
up stage. We regard answers provided by crowdworkers in
the clean-up stage as ground-truth answers, and treat origi-
nal answers as human predictions.

Results
To evaluate the performance of different models on proposed
dataset, we use two metrics. The Exact Match (EM) met-
ric measures the percentage of predictions that match the
ground truth answers exactly. The F1 score metric is a less
strict metric measuring the overlap between the prediction
and the ground truth answers. Both two metrics ignore punc-
tuations and articles(such as a, an and the).

4https://github.com/NLPLearn/R-net
5https://rajpurkar.github.io/SQuAD-explorer/
6https://github.com/NLPLearn/QANet



Abstract We investigate the potential of a restricted Boltzmann Machine (RBM) for discriminative rep-
resentation learning. By imposing the class information preservation constraints on the hidden
layer of the RBM, we propose a Signed Laplacian Restricted Boltzmann Machine (SLRBM)
for supervised discriminative representation learning. The model utilizes the label information
and preserves the global data locality of data points simultaneously. Experimental results on the
benchmark data set show the effectiveness of our method.

Question What model do the authors propose?
R-NET a Signed Laplacian Restricted Boltzmann Machine (SLRBM) for supervised discriminative rep-

resentation learning
QANet The model utilizes the label information and preserves the global data locality of data points

simultaneously.
PaperQA a Signed Laplacian Restricted Boltzmann Machine (SLRBM)

Table 3: The comparison among RNET, QANet and our framework on a sample abstract.

Model Dev Test
EM F1 EM F1

R-NET (Wang et al. 2017) 11.57 32.51 11.28 31.69
QANet (Yu et al. 2018) 17.93 50.31 18.19 51.26
Our Model 19.80 55.03 19.23 54.55
Human Performance 62.41 87.56 63.76 86.98

Table 4: Experiment Results

Table 4 illustrates the performance of our model and the
aforementioned baseline models on both dev and test set, as
well as human performance. Our model achieves EM scores
of 19.80/19.23 and F1 scores of 55.03/54.55 on dev/test
set respectively, which beats all the other baseline models.
However, there is still a significant gap between our model
and human performance. We do notice that EM scores are
generally much lower than F1 scores. This is because entities
in academic abstracts are often modified by several complex
words and clauses, which increases the difficulty of discrim-
inating boundary words and presents a huge challenge of our
dataset.

One point of interest is to examine how the performance
of our model varies across the lengths of predicted answers.
As is shown in Figure 4, our model performs stably and well
in a wide range of answer lengths. We also note that there is
performance degradation when the answer is either too short
or too long. This is partly due to the intuitive nature of the
evaluation metric.

Moreover, we observe how the performance of each
model varies with respect to question types. In Figure 5,
the height of each bar represents the F1 score. Our model,
outperforming the other baseline models in each type ex-
cept Results, is adept at Objective and Method questions
but struggles with Results and Others questions. QANet
is skilled at Objective and Results but surprisingly takes a
poor performance on Method. The performance of R-NET
is fairly balanced.

Furthermore, in order to get a further understanding of
three models’ robustness and generalization, we collect
some latest paper abstracts from Arxiv7 and run the pre-
trained models. Our hands-on evaluation indicates that, typ-
ically, all three models can catch the core entities. As the
sample result shown in Table 3 , all three models seem to
predict the answers with semantic correlation. However, the
answer of QANet is only supplementary information intro-

7https://arxiv.org

ducing the model’s feature and advantage, not the model it-
self. This indicates that QANet might be fooled by the word
model. In fact, same as QANet, sequence tagging module of
our model also marks the whole sentence as a candidate an-
swer. However, the sentence ranking module gives the pre-
vious sentence a higher matching score, leading to dispose
of this candidate answer. Both our model and R-NET catch
SLRBM, the name of the proposed model, while R-NET sup-
plies more details.

Error Analysis
We analyze 50 error examples generated by our model from
the test set. We identify four key factors in causing the errors,
which are elaborated as below.

Incorrect Sentence In 16% of the examples, the predicted
best-matched sentence is incorrect due to semantic-level
similarity with the target sentence. For example, as is shown
in Table 3, QANet generates a wrong sentence, and our
model also makes similar mistakes in some cases.

Syntactic Complications and Ambiguities In 38% of the
examples, our model generates sequences containing the
same entity as the one that may exist in the correct answer.
For instance, for the question “What method does this pa-
per propose?”, some spans contain words like approaches
and methods etc, which do not exactly refer to the real meth-
ods proposed in the papers, but are sometimes marked as
answers as well.

External Knowledge In 4% of the examples, external
knowledge is indispensable for answering the questions.
Some complex terminologies are still too hard for machines
to comprehend. A potential solution is to leverage knowl-
edge base in question answering (Wang et al. 2016a).

Imprecise Boundaries The rest of errors consist of impre-
cise boundaries where one or more words are either missed
or appended at the edge of the correct span. The majority
of cases contain an extraneous verb such as propose and
present. In other cases, the entire phrase/clause after a con-
junction (e.g., and / or) is lost. For instance, for the ques-
tion “What method does this paper propose?”, the correct
answer is “a method for object detection and recognition”.
However, our model generates a less favored answer, which
is “a method for object detection”.
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Figure 4: Performance of our model across lengths of an-
swers. The blue dot indicates the mean F1 score at given
length. The vertical bar represents the standard derivation of
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Related Work
In this section, we introduce the prior work from the per-
spective of both datasets and machine reading comprehen-
sion models.

Benchmarking Datasets Reading Comprehension
datasets require systems to identify a span in a text to
answer a given question, which typically involves ex-
tracting relevant entities and reasoning based on rules.
There have been several reading comprehension datasets
up to present. MCTest (Richardson, Burges, and Ren-
shaw 2013) contains 660 stories. Most of the stories
and sentences are short, and the size of vocabulary is
quite small as well. SQuAD (Rajpurkar et al. 2016;
Rajpurkar, Jia, and Liang 2018), the most famous challenge
in the field of question answering, contains about 100K
question-answer pairs from 536 articles, where the context
for each question is a single paragraph in these articles.
CNN and Daily Mail QA datasets (Hermann et al. 2015)
are two large-scale cloze datasets which contain numerous
documents. MS Marco (Nguyen et al. 2016) is another
MRC dataset sampled from real web documents and user
queries. Close scrutiny of existing reading comprehension
datasets, however, reveals that these datasets do not get
involved in the corpus of academic papers. Such corpus
presents a more challenging task demanding higher-level

intelligence for machines.
At present, there have been several works focusing on

the domain of academic literature. The PubMed 200k RCT
(Dernoncourt and Lee 2017) is a public large-scale dataset
for sequential sentence classification built upon academic
abstracts. However, this task is simple without requirements
for machine comprehension and reasoning. (Cohan et al.
2018) summarizes scientific papers to abstracts and pro-
vide two datasets derived from Arxiv and PubMed. How-
ever, abstractive summarization is more like information re-
trieval and lack of comprehension. DLPaper2Code (Sethi et
al. 2018) extracts and understands deep learning design flow
diagrams and tables in a research paper and converts them
into execution ready source code. SCITAIL (Khot, Sabhar-
wal, and Clark 2018), also focusing on scientific QA task,
treats multiple-choice question-answering as an entailment
problem. It is constructed solely from natural sentences,
which is quite different from our reading comprehension
dataset. To the best of our knowledge, PAPERQA is the first
dataset bringing machine comprehension into the corpus of
academic abstracts.

Reading Comprehension Models A great number of
end-to-end neural network models have been investigated to
tackle the task of machine reading comprehension, including
R-Net (Wang et al. 2017), DCN (Xiong, Zhong, and Socher
2016), ReasoNet (Shen et al. 2018), GA Reader (Dhingra et
al. 2017) and QANet (Yu et al. 2018). They typically consist
of an embedding layer, an encoding layer to integrate con-
textual information, an attention layer to incorporate query
and context, a decode layer and an output layer which varies
according to the specific QA task. However, in terms of
our dataset, empirical observations indicate that word and
pattern similarity often misleads the model, contributing to
the answer located in a sentence with semantic correlation,
which is not supposed to be the location for the right answer.
Question understanding and adaption (Zhang et al. 2017) ex-
plores different question encoding, but it doesn’t adapt to our
dataset due to the questions’ simple pattern in our dataset.
DCR (Yu et al. 2016) extracts and ranks a set of answer can-
didates, while we take advantage of semantic information in
the sentence level. S-Net (Tan et al. 2018) and (Wang and
Nyberg 2015) takes advantage of joint learning, inspiring us
to design a similar framework (Wang and Nyberg 2015) for
end-to-end training.

Conclusion and Future Work
This paper is a first attempt at teaching machine to read and
comprehend scholarly paper abstracts. We provide a new
machine reading comprehension dataset alongside a chal-
lenging task. Then we propose a novel model to solve this
task, composed of sentence ranking and sequence tagging
stages, and end-to-end trained by joint learning. Empirical
evaluations show that our model outperforms the state-of-
the-art question answering models. We hope our work will
benefit researchers in automatic paper survey, and the re-
lease of our dataset encourages further exploration. Simulta-
neously we will expand the size of our dataset with quality
guaranteed.
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