## Learning by Fixing: Solving Math Word Problems with Weak Supervision



Yining Hong ${ }^{1}$


Qing Li ${ }^{2}$


Daniel Ciao ${ }^{1}$
${ }^{1}$ Department of Computer Science, UCLA


Siyuan Huang ${ }^{2}$


Song-Chun Zhu ${ }^{1,2}$

[^0]
## Solving Math Word Problems via Neural-Symbolic Model

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Solving Math Word Problems via Neural-Symbolic Model

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Solving Math Word Problems with Full Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree (Annotated):


Train: only go through the neural module, optimize expression accuracy

## Solving Math Word Problems with Full Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

## Expression Tree :



## Answer:

Test: go through the neural module and symbolic module, evaluate the answer accuracy

## Solving Math Word Problems with Full Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


Train: only go through the neural module, optimize expression accuracy Test: go through the neural module and symbolic module, evaluate the answer accuracy

## Multiple Solutions for a given math word problem



Fully-Supervised methods: fit the given solution and cannot generate diverse solutions.

## Fully-supervised methods: Need time-consuming annotations

Annotating the expressions for MWPs is time-consuming.However, a large amount of MWPs with their final answers can be mined effortlessly from the internet (e.g., online forums). How to efficiently utilize these partially-labeled data without the supervision of expressions remains an open problem.

## Solving Math Word Problems with Weak Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree
(Unannotated)

Answer (Annotated):
275

## Solving Math Word Problems with Weak Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


Answer (Annotated): 275

## Solving Math Word Problems with Weakly Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Solving Math Word Problems with Weakly Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Solving Math Word Problems with Weakly Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Solving Math Word Problems with Weakly Supervision

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Framework

Goal-Driven Tree Model


## Goal-Driven Tree Structured Model[1]



## Goal-Driven Tree Structured Model

- Word embedding + bi-directional GRU

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?
$\mathbf{W} \in R^{n \times d} \quad \mathbf{q}_{0}=\overrightarrow{\mathbf{h}_{n}^{x}}+\overleftarrow{\mathbf{h}_{0}^{x}}$
Attention
$\mathbf{q}_{0}$

## Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Goal-Driven Tree Structured Model

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?


## Learning by Fixing

## Fixing



## Learning by Fixing

```
Algorithm 1 Fixing Mechanism
    Input: reasoning tree \(\hat{T}\), ground-truth answer \(y\)
    \(T^{(0)}=\hat{T}\)
    for \(i \leftarrow 0\) to \(m\) do
        \(T^{*}=1-\operatorname{FIX}\left(T^{(i)}, y\right)\)
        if \(T^{*} \neq \varnothing\) then
            return \(T^{*}\)
        else
            \(T^{(i+1)}=\operatorname{RANDOMWALK}\left(T^{(i)}\right)\)
    return \(\varnothing\)
10:
11: function 1-FIX \((T, y)\)
    \(q=\) PriorityQueue(), \(S=\) the root node of \(T\)
    : \(q \cdot p u s h(S, y, 1)\)
    while \(\left(A, \alpha_{A}, p\right)=q . p o p()\) do
        if \(A \in \Sigma\) then
            \(T^{*}=\hat{T}\left(A \rightarrow \alpha_{A}\right)\)
            return \(T^{*}\)
        for \(B \in \operatorname{child}(A)\) do
            \(\alpha_{B}=\operatorname{solve}\left(B, A, \alpha_{A}\right)\)
            if not \(\left(B \in \Sigma\right.\) and \(\alpha_{B} \notin \Sigma\) ) then
            \(q . \operatorname{push}\left(B, \alpha_{B}, p\left(B \rightarrow \alpha_{B}\right)\right)\)
    return \(\varnothing\)
```




## Tree Regularization

$\operatorname{Size}(T) \in[\operatorname{minSize}(T), \operatorname{maxSize}(T)]$
$\operatorname{minSize}(T)=a_{\min } \operatorname{len}\left(V^{\text {num }}\right)+b_{\text {min }}$
$\max \operatorname{Size}(T)=a_{\text {max }} \operatorname{len}\left(V^{\text {num }}\right)+b_{\text {max }}$

1. The number of operators cannot be greater than [Size(T)/2].
2. Except the last position, the number of numeric values(quantities and constants) cannot be greater than the number of operators.

$$
\begin{aligned}
& V^{\text {num }}=\{100,2,3.5\} \\
& V^{o p}=\{+,-, \times, \dot{-}, \wedge\} \\
& V^{\text {con }}=\{1,2, \pi\}
\end{aligned}
$$

## Target size $\boldsymbol{l}=\mathbf{5}$

| $\times$ | (2) | $V^{o p}$ |
| :---: | :---: | :--- |
| $\div$ | $\mathrm{N} / \mathrm{A}$ | $V^{o p} \cup V^{\text {num }} \cup V^{c o n}$ |
| 100 | (1) | $V^{\text {num }} \cup V^{\text {con }}$ |
| 2 | (1) | $V^{\text {num }} \cup V^{\text {con }}$ |
| 3.5 | (1) | $V^{n u m} \cup V^{\text {con }}$ |

Prefix: $\times \div 10023.5$


Prefix: $\times \div 1002+23.5$

## Memory Buffer



$$
J(P, \beta)=-\sum_{T^{*} \in \beta} \log p\left(T^{*} \mid P\right)
$$

```
Algorithm 2 Learning-by-Fixing
    Input: training set \(\mathcal{D}=\left\{\left(P_{i}, y_{i}\right)\right\}_{i=1}^{N}\)
    : memory buffer \(\mathcal{B}=\left\{\beta_{i}\right\}_{i=1}^{N}\), the GTS model \(\theta\)
    for \(P_{i}, y_{i}, \beta_{i} \in(\mathcal{D}, \mathcal{B})\) do
        \(\triangleright\) Exploring
5: \(\quad \hat{T}_{i}=\operatorname{GTS}(P ; \theta)\)
6: \(\quad T_{i}^{*}=m-\operatorname{FIX}\left(\hat{T}_{i}, y_{i}\right)\)
7: \(\quad\) if \(T_{i}^{*} \neq \varnothing\) and \(T_{i}^{*} \notin \beta_{i}\) then
8: \(\quad \beta_{i} \leftarrow \beta_{i} \cup\left\{T_{i}^{*}\right\}\)
9:
    \(\triangleright\) Learning
10: \(\quad \theta=\theta-\nabla_{\theta} J\left(P_{i}, \beta_{i}\right)\)
```


## Experiment

- Dataset:

Math23K, 23161 math word problems

- Evaluation Metric:

Answer accuracies of all the top- $1 / 3 / 5$ predictions using beam search

- Inference Models:

Seq2Seq, Goal-Driven Tree-Structured Model (GTS)

- Learning Strategies:

REINFORCE, MAPO[3], LBF (Learning by Fixing), LBF-w/o-M (Fixing without Memory)

## Top-1 Answer Accuracy



## Diverse Solutions with Memory Buffer, Ablative Studies

| Model | Tree Size | Acc@1 | Acc@3 | Acc@5 |
| :---: | :---: | ---: | ---: | ---: |
| Fully Supervised |  |  |  |  |
| GTS |  |  |  |  |
| Weakly Supervised |  |  |  |  |
| GTS-LBF-fully | $\mathbf{7 4 . 3}$ | 42.2 | 30.0 |  |
|  | $[1,+\infty)$ | $\sim 0$ | $\sim 0$ | $\sim 0$ |
|  | $[2 \mathrm{n}-1,2 \mathrm{n}+1]$ | 55.3 | 26.2 | 19.3 |
|  | $[2 \mathrm{n}-1,2 \mathrm{n}+3]$ | 58.3 | 27.7 | 20.3 |
|  | $[2 \mathrm{n}-3,2 \mathrm{n}+5]$ | 56.7 | 27.7 | 20.6 |
| GTS-LBF | $[1,+\infty)$ | $\sim 0$ | $\sim 0$ | $\sim 0$ |
|  | $[2 \mathrm{n}-1,2 \mathrm{n}+1]$ | 56.7 | 45.3 | 39.1 |
|  | $[2 \mathrm{n}-1,2 \mathrm{n}+3]$ | $\mathbf{5 9 . 4}$ | $\mathbf{4 9 . 6}$ | $\mathbf{4 5 . 2}$ |
|  | $[2 \mathrm{n}-3,2 \mathrm{n}+5]$ | 57.6 | 49.3 | 45.2 |


| Models | Steps | $\mathbf{1}$ | $\mathbf{1 0}$ | $\mathbf{5 0}$ (default) |
| :---: | :---: | :---: | :---: | :---: |
| 要 | $\mathbf{1 0 0}$ |  |  |  |
| Seq2seq-LBF-w/o-M | 41.9 | 43.4 | 44.7 | $\mathbf{4 7 . 8}$ |
| Seq2seq-LBF | 43.9 | $\mathbf{4 5 . 7}$ | 43.6 | 44.6 |
| GTS-LBF-w/o-M | 51.2 | 54.6 | $\mathbf{5 8 . 3}$ | 57.8 |
| GTS-LBF | 52.5 | 55.8 | 59.4 | $\mathbf{5 9 . 6}$ |

## Qualitative Study

## Problem

The school purchased 85 sets of tables and chairs for 67 dollars per table and 23 dollars per chair. How much did the school spend buying these tables and chairs?

There are 1200 students in a school, and $65 \%$ are girls.
How many boys are there?
The fruit store shipped 240 kilograms of raw pears. The apples shipped were 60 kilograms less than twice the weight of raw pears. How many kilograms of apples are shipped?

The cafeteria has 260 kg of flour and 6 bags of rice, 25 kg per bag. How many more kilograms of flour are there than rice?

## Expression Right,

Answer Right

## Ground-Truth Top-5 Solutions



## Conclusions \& Future Works

- We propose a weakly-supervised paradigm for learning MWPs and a novel learning-by-fixing framework to boost the learning.
- For future work, we will prevent generating equivalent or spurious solutions during training, possibly by making the generated solution trees more interpretable with semantic constraints. (See also our newest work[4]!)
- A weakly-supervised large-scale dataset on math word problems would be beneficial for this line of research.


## You are welcomed to visit our project pages!

The project page of this paper: https://evelinehong.github.io/lbf-site/


For more details about the fixing mecnanism: https://liqing-ustc.github.io/NGS/


For interpretable math word problems solving: https://evelinehong.github.io/smart-site/



[^0]:    ${ }^{2}$ Department of Statistics, UCLA

