

Learning by Fixing: Solving Math Word Problems with Weak Supervision

Yining Hong¹

Qing Li²

Daniel Ciao¹

Siyuan Huang²

Song-Chun Zhu^{1,2}

¹Department of Computer Science, UCLA

² Department of Statistics, UCLA

Solving Math Word Problems via Neural-Symbolic Model

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree

Solving Math Word Problems via Neural-Symbolic Model

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Train: only go through the neural module, optimize expression accuracy

Expression Tree (Annotated):

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Test: go through the neural module and symbolic module, evaluate the answer accuracy

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey? Inference Neural Model Train **Expression Tree :** 100 3.5 100 Symbolic Execution Test Answer: 275

Train: only go through the neural module, optimize expression accuracy Test: go through the neural module and symbolic module, evaluate the answer accuracy

Discrepancy

Multiple Solutions for a given math word problem

Fully-Supervised methods: fit the given solution and cannot generate diverse solutions.

Fully-supervised methods: Need time-consuming annotations

Annotating the expressions for MWPs is time-consuming.However, a large amount of MWPs with their final answers can be mined effortlessly from the internet (e.g., online forums). How to efficiently utilize these partially-labeled data without the supervision of expressions remains an open problem.

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Expression Tree

(Unannotated)

Answer (Annotated): 2

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Framework

[1] A Goal-Driven Tree-Structured Neural Model for Math Word Problems. Zhipeng Xie and Shichao Sun.

• Word embedding + bi-directional GRU

Problem: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey? $\mathbf{W} \in \mathbb{R}^{n \times d}$ $\mathbf{q}_0 = \overline{\mathbf{h}}_n^x + \overline{\mathbf{h}}_0^x$ Attention \mathbf{q}_0

 \mathbf{q}_l

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey? $\mathbf{W} \in \mathbb{R}^{n \times d}$ $\mathbf{q}_0 = \mathbf{h}_n^x + \mathbf{h}_0^x$ Attention \mathbf{q}_0

*

 \mathbf{q}_r

P: <u>A truck travels 100 kilometers in 2 hours.</u> At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

P: A truck travels <u>100 kilometers</u> in <u>2 hours</u>. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for <u>another 3.5 hours</u>, how many kilometers will it complete for the entire journey?

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for <u>another 3.5 hours</u>, how many kilometers will it complete for the entire journey?

P: A truck travels 100 kilometers in 2 hours. At this speed, if it travels for another 3.5 hours, how many kilometers will it complete for the entire journey?

Learning by Fixing

Fixing

[2] Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning. Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu.

Learning by Fixing

Algorithm 1 Fixing Mechanism

1: **Input**: reasoning tree \hat{T} , ground-truth answer y 2: $T^{(0)} = \hat{T}$ 3: for $i \leftarrow 0$ to m do $T^* = 1 - FIX(T^{(i)}, y)$ 4: if $T^* \neq \emptyset$ then 5: return T^* 6: 7: else $T^{(i+1)} = \text{RANDOMWALK}(T^{(i)})$ 8: 9: return Ø 10: 11: function 1-FIX(T, y)12: q = PriorityQueue(), S = the root node of T13: q.push(S, y, 1)14: while $(A, \alpha_A, p) = q.pop()$ do 15: if $A \in \Sigma$ then 16: $T^* = \hat{T}(A \to \alpha_A)$ 17: return T^* 18: for $B \in child(A)$ do 19: $\alpha_B = solve(B, A, \alpha_A)$ 20: if not $(B \in \Sigma \text{ and } \alpha_B \notin \Sigma)$ then 21: $q.push(B, \alpha_B, p(B \to \alpha_B))$ 22: return Ø

Tree Regularization

$$\begin{split} & \operatorname{Size}(T) \in [\operatorname{minSize}(T), \operatorname{maxSize}(T)] \\ & \operatorname{minSize}(T) = a_{min} \operatorname{len}(V^{num}) + b_{min} \\ & \operatorname{maxSize}(T) = a_{max} \operatorname{len}(V^{num}) + b_{max} \end{split}$$

- 1. The number of operators cannot be greater than [Size(T)/2].
- 2. Except the last position, the number of numeric values(quantities and constants) cannot be greater than the number of operators.

I I	$V^{num} = \{100, 2, 3.5\}$ $V^{op} = \{+, -, \times \div \Lambda\}$		[Target size $l = 7$			
ī	$V^{con} = \{1, 2, \pi\}$				×	2	V^{op}
Т	Target size $l = 5$			÷	N/A	$V^{op} \cup V^{num} \cup V^{con}$	
:	×	2	V ^{op}		100	N/A	$V^{op} \cup V^{num} \cup V^{con}$
	÷	N/A	$V^{op} \cup V^{num} \cup V^{con}$		2	N/A	$V^{op} \cup V^{num} \cup V^{con}$
1	00	1	$V^{num} \cup V^{con}$		+	2	V^{op}
	2	1	$V^{num} \cup V^{con}$		2	1	$V^{num} \cup V^{con}$
3	.5	1	$V^{num} \cup V^{con}$		3.5	1	$V^{num} \cup V^{con}$
Р	refix	: × ÷ 1	00 2 3.5		Prefix:	× ÷ 100 2	+ 2 3.5

Memory Buffer

$$J(P,\beta) = -\sum_{T^* \in \beta} \log p(T^*|P)$$

Algorithm 2 Learning-by-Fixing

1: Input: training set
$$\mathcal{D} = \{(P_i, y_i)\}_{i=1}^N$$

2: memory buffer $\mathcal{B} = \{\beta_i\}_{i=1}^N$, the GTS model θ
3: for $P_i, y_i, \beta_i \in (\mathcal{D}, \mathcal{B})$ do
4: $\triangleright Exploring$
5: $\hat{T}_i = \text{GTS}(P; \theta)$
6: $T_i^* = m$ -FIX (\hat{T}_i, y_i)
7: if $T_i^* \neq \emptyset$ and $T_i^* \notin \beta_i$ then
8: $\beta_i \leftarrow \beta_i \cup \{T_i^*\}$
9: $\triangleright Learning$
10: $\theta = \theta - \nabla_{\theta} J(P_i, \beta_i)$

Experiment

• Dataset:

Math23K, 23161 math word problems

• Evaluation Metric:

Answer accuracies of all the top-1/3/5 predictions using beam search

• Inference Models:

Seq2Seq, Goal-Driven Tree-Structured Model (GTS)

• Learning Strategies:

REINFORCE, MAPO[3], LBF (Learning by Fixing), LBF-w/o-M (Fixing without Memory)

Top-1 Answer Accuracy

	Accuracy(%)					
Fully-Supervised						
Retrieva	47.2					
Classifica	57.9					
LSTM	51.9					
CNN	CNN (Robaidek, Koncel-Kedziorski, and Hajishirzi 2018)					
	58.1					
	66.7					
	65.8					
	66.9					
	74.3					
	74.8 ¹					
	74.1					
	Weakly-Supervised					
	REINFORCE	1.2				
Sagleag	MAPO	10.7				
seq2seq	LBF-w/o-M	44.7				
	LBF	43.6				
	REINFORCE	15.8				
CTS	MAPO	20.8				
015	LBF-w/o-M	58.3				
	LBF	59.4				

Diverse Solutions with Memory Buffer, Ablative Studies

Model	Tree Size	Acc@1	Acc@3	Acc@5		
Fully Supervised						
G	TS	74.3	42.2	30.0		
GTS-L	BF-fully	74.1	63.4	56.3		
Weakly Supervised						
	$[1,+\infty)$	~ 0	~ 0	${\sim}0$		
GTS-LBF-	[2n-1,2n+1]	55.3	26.2	19.3		
w/o-M	[2n-1,2n+3]	58.3	27.7	20.3		
	[2n-3,2n+5]	56.7	27.7	20.6		
	$[1,+\infty)$	~ 0	~ 0	~ 0		
CTS I DE	[2n-1,2n+1]	56.7	45.3	39.1		
UIS-LDF	[2n-1,2n+3]	59.4	49.6	45.2		
	[2n-3,2n+5]	57.6	49.3	45.2		

Steps	1	10	50 (default)	100
Seq2seq-LBF-w/o-M	41.9	43.4	44.7	47.8
Seq2seq-LBF	43.9	45.7	43.6	44.6
GTS-LBF-w/o-M	51.2	54.6	58.3	57.8
GTS-LBF	52.5	55.8	59.4	59.6

Qualitative Study

Conclusions & Future Works

- We propose a weakly-supervised paradigm for learning MWPs and a novel learning-by-fixing framework to boost the learning.
- For future work, we will prevent generating equivalent or spurious solutions during training, possibly by making the generated solution trees more interpretable with semantic constraints. (See also our newest work[4]!)
- A weakly-supervised large-scale dataset on math word problems would be beneficial for this line of research.

[4] "SMART: A Situation Model for Algebra Story Problems via Attributed Grammar". Yining Hong, Qing Li, Ran Gong, Daniel Ciao, Siyuan Huang, Song-Chun Zhu.

You are welcomed to visit our project pages!

The project page of this paper: https://evelinehong.github.io/lbf-site/

For more details about the fixing mechanism: <u>https://liqing-ustc.github.io/NGS/</u>

For interpretable math word problems solving: https://evelinehong.github.io/smart-site/

